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We study the transition between a Coulomb phase and a dimer crystal observed in numerical simulations of
the three-dimensional classical dimer model, by mapping it to a quantum model of bosons in two dimensions.
The quantum phase transition that results, from a superfluid to a Mott insulator at fractional filling, belongs to
a class that cannot be described within the Landau-Ginzburg-Wilson paradigm. Using a second mapping, to a
dual model of vortices, we show that the long-wavelength physics near the transition is described by a U�1�
gauge theory with SU�2� matter fields.
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I. INTRODUCTION

In the presence of strong local constraints, certain classi-
cal systems exhibit so-called “Coulomb phases,” where cor-
relation functions have power-law forms and nontrivial di-
rectional dependence.1–5 These phases are of considerable
theoretical interest because of their unusual properties, and
are also of direct experimental relevance. Examples include
frustrated magnets such as spin ice4 and molecular dimers
adsorbed onto surfaces.6

Coulomb phases stand in contrast to ordered phases char-
acterized by a broken symmetry and an associated order
parameter.7 Continuous transitions between Coulomb and or-
dered phases present an unusual situation where the behavior
at the transition cannot be captured purely in terms of a
Ginzburg-Landau theory of the fluctuations of this order pa-
rameter. Instead, a complete description of the transition re-
quires the long-range correlations in the Coulomb phase to
be taken into account.8–13

Classical dimer models5,14 are among the simplest pos-
sible model systems that exhibit Coulomb phases, and the
discovery of a direct transition into an ordered crystalline
phase in the dimer model on the cubic lattice has stimulated
considerable interest.9,12,15–18 The question of whether the
transition is continuous or first order remains controversial,
but it is clear that the correlation length at the transition is
either divergent or at least several orders of magnitude larger
than the lattice spacing. The long-distance properties near the
transition can therefore be described in terms of a continuum
theory including only the relevant degrees of freedom. It has
been suggested12,16,17 that the appropriate description is
given in terms of a noncompact U�1� gauge theory with
SU�2�-symmetric matter fields, or noncompact CP1

�NCCP1�.
In this paper, we analyze the transition in the classical

dimer model on the cubic lattice by using a mapping to an
equivalent quantum model in two spatial dimensions. A brief
outline of this mapping and the predictions that result has
been presented previously.12 We use the standard approach of
relating classical statistical mechanics in d dimensions to
quantum mechanics in d−1 dimensions, which, in principle,

provides an exact identity between the partition functions in
the two cases.

By an appropriate choice of the mapping, we represent the
interacting dimers on the links of a cubic lattice as hard-core
bosons on the sites of a kagome lattice. The Coulomb phase
then corresponds to the condensed phase of the bosons, and
the power-law correlations can be understood in terms of the
coupling to the phonon mode of the superfluid. The thermal
transition into the dimer crystal is equivalent to a �zero-
temperature� quantum phase transition from the superfluid to
a Mott insulator at fractional filling.

Interestingly, this belongs to a class of unconventional
quantum phase transitions considered by Balents et al.19 In
these cases, the phases on the two sides of the transition have
different order parameters, and a naïve application of the
Landau-Ginzburg-Wilson �LGW� paradigm predicts that a
continuous transition requires simultaneous fine tuning of
two independent parameters. Balents et al.19 instead pro-
posed a critical theory in terms of dual vortex degrees of
freedom, which allows for a generic continuous transition
between the two phases. Applying this approach to our ef-
fective quantum model gives a continuum gauge theory for
the transition that is the same as has been obtained using a
direct mapping carried out in three spatial dimensions.16,17

We have previously11 applied a similar approach to a
model of nearest-neighbor spin ice, where a transition takes
place from a high-temperature Coulomb phase to a low-
temperature saturated phase, which has neither power-law
correlations nor symmetry breaking.10 The mapping again
leads to a theory of quantum bosons, but in that case the
thermal phase transition maps to the standard quantum phase
transition between the superfluid and a vacuum state, de-
scribed by the conventional LGW approach.

In the remainder of this section, we define the cubic dimer
model and review its phase structure. In Sec. II, we introduce
the mapping from the classical dimer model to a quantum
model of bosons on the kagome lattice. We then show, in
Sec. III, that the properties of the Coulomb phase of the
classical model can be understood in terms of those of the
condensed phase of the quantum bosons. In Sec. IV, we ad-
dress the phase transition and use a dual picture in terms of
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vortices to derive a continuum theory to describe the critical
properties. We conclude in Sec. V with discussion. In the
appendix, we briefly consider modifications to the dimer
model that lead to the appearance of an intermediate disor-
dered phase and show how this can be understood in terms of
the quantum mapping.

Model

We treat a model of classical dimers on the links of a
simple cubic lattice. In a given configuration of the classical
model, each link is occupied by either one dimer or none,
with the close-packing constraint that every site of the lattice
has a total of precisely one dimer on the adjoining links. We
define the variables d��r�� �0,1�, giving the number of
dimers on the link joining the sites at r and r+��, where
����� �x ,y ,z�� is a basis vector of the cubic lattice. The
close-packing constraint can then be expressed as

�
�

�d��r� + d��r − ���� = 1, �1�

for all sites r.
Each configuration is assigned an energy �and hence

Gibbs-Boltzmann weight� that favors the parallel alignment
of the dimers on neighboring links. In the simplest case, the
energy of a configuration is E=−n�, where n� is the total
number of plaquettes �of any orientation� with parallel
dimers. In a system with periodic boundary conditions and
an even number of sites in all three directions, the minimum
of E occurs when all dimers are placed on parallel links,
giving n� =N, the total number of sites. There are six such
configurations; one example has d��r�=1 for �=z and rz
odd, and zero otherwise. We expect our continuum theory to
be equally applicable to other potentials with the same sym-
metry that also favour columnar crystalline order.

At temperature T=0, the system minimizes E by selecting
one of these six configurations, breaking both the transla-
tional and rotational symmetries of the lattice. We define the
“magnetization” order parameter

m��r� =
1

2
�− 1�r��d��r� − d��r − ���� , �2�

so that the six ground states have m� ���x , ��y , ��z� for
all r. For small positive T, a low-temperature expansion pre-
dicts that 	m
 will remain nonzero and directed along one of
the cubic axes.

In the opposite limit, T→�, there is equal statistical
weight for all configurations obeying the close-packing con-
straint, the number of which grows exponentially with N.
This limit has been considered by Huse et al.,3 who showed
that the system exhibits a Coulomb phase, where the corre-
lation functions are algebraic at long distances. In particular,
for the connected part of the dimer correlation function, one
finds the standard three-dimensional �3D� dipolar form,3

	d��r�d��0�
c � �r
3r�r� − r2���

r5 , �3�

where �r= �−1���r� is �1 on the two sublattices. This form
for the correlation functions is expected to persist for large
finite temperatures.

The high- and low-temperature phases cannot be
smoothly connected and must therefore be separated by one
or more phase transitions. High-precision Monte Carlo simu-
lations show that there is, in fact, a single phase transition at
a critical temperature9 TC�1.675, and show that this is ei-
ther continuous or very weakly first order. In either case, the
correlation length at the transition is much larger than the
lattice spacing and so a continuum description should be
expected to capture the long-wavelength properties near the
transition.

As we have noted, we expect our theory to be equally
applicable in the presence of modifications that maintain the
symmetry of the configuration energy and the ordered states.
One can also consider modifications of the model that reduce
the cubic symmetry of the lattice, thereby reducing the sym-
metry of the effective quantum Hamiltonian and changing
the degeneracy of the ordered states.17 We consider one ex-
ample in the appendix, in which the result is the appearance
of an intermediate phase between the Coulomb and ordered
phases.

II. MAPPING TO KAGOME BOSONS

We now describe the first stage of our derivation of the
continuum theory for the transition, in which we map from
the statistics of classical dimers to a quantum model. We do
so by using the standard mapping between classical statisti-
cal mechanics in d dimensions and quantum mechanics in
d−1 dimensions, in which one spatial dimension of the clas-
sical problem is interpreted as the �imaginary-� time direc-
tion for the quantum problem.

A. Definition of mapping

In defining the mapping, we have the freedom to choose
the time direction for the quantum problem, and we do so in
a way that does not distinguish between the ordering patterns
in the low-temperature phase. While one of the cubic axes
might seem to be a natural choice, taking this would neces-
sarily distinguish those cases where 	m
 is parallel to the
time direction from those where it is perpendicular. Instead,
we choose the �111� direction and define the quantum imagi-
nary time as �=��r�.

The mapping follows the standard procedure of using a
transfer matrix to connect the degrees of freedom in one
layer of the system to those in the next, followed by inter-
pretation of the transfer matrix as the exponential of a quan-
tum Hamiltonian. We first divide the links of the cubic lattice
into layers by the imaginary-time coordinates of their mid-
points. Each layer is treated as a time slice and the rows and
columns of the transfer matrix T1 are labeled by the configu-
rations of two adjacent layers. The configurations of a given
�111� plane are mapped onto the basis states of a quantum
Hilbert space by simply identifying the presence �or absence�
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of a dimer with the presence �absence� of a boson.
In order for the resulting quantum model to describe lat-

tice bosons, we must ensure two features. First, we require
the sites of the lattice in one time slice to correspond to those
in the next, and second, we require conservation of particle
number. As far as the first requirement is concerned, Fig. 1
shows that the midpoints of cubic links with a given value of
� form a kagome lattice, and that the lattices formed by ad-
jacent layers are displaced with respect to each other. Our
first requirement can nonetheless be satisfied by taking a
product of �any multiple of� three elementary transfer matri-
ces T1 to define a single time step. As illustrated in Fig. 1,
planes separated by three units in the time direction
coincide.20 �Each of the three elementary matrices has a dif-
ferent form because of the relative displacements between
successive kagome layers, but for simplicity we denote them
all without distinction by T1.�

We also require conservation of particle number, meaning
that the number of bosons in a given time slice should be
constrained to equal the number in the following. The close-
packing constraint in Eq. �1� implies that

�
r��

�
�

d��r� = �
r���−1�

1 − �
�

d��r�� , �4�

where r�� indicates a sum over all cubic sites in imaginary-
time slice �. This equation states that if the kagome plane at
�− 1

2 has n bosons and a total of A sites, then the plane at
�+ 1

2 will have A
3 −n bosons. To define a transfer matrix that

conserves particle number, we must therefore take a product
of an even number of elementary transfer matrices T1.

To satisfy the two requirements, we must therefore define
the full transfer matrix T=T1

�� with �� an integer divisible by
both 3 and 2, and so we take ��=6. The transfer matrix T
therefore has rows and columns labeled by the configurations
of two planes separated by ��=6, and its elements give the
statistical weights for those configurations, summed over all
possible configurations of the intermediate planes.

The partition function for the classical problem is given
by Z=Tr TL/��, where L is the length of the system in the
�111� direction and periodic boundary conditions are as-
sumed in this direction. The effective quantum Hamiltonian
H is defined by T=e−H��, so that Z is given by the quantum
partition function at inverse temperature �	L. The classical
thermodynamic limit is therefore given by the quantum zero-
temperature limit, �→�, and we will always work in this
limit.

B. Quantum Hamiltonian

For a finite lattice, it is, in principle, possible to find the
transfer matrix T exactly, by considering all allowed configu-
rations of two planes separated by ��=6 and summing the
Boltzmann weights of all possible arrangements of the inter-
mediate planes. The quantum Hamiltonian H can then be
found by taking the �matrix� logarithm of T. For even fairly
small lattices, however, the number of configurations is
large, making this a computationally difficult problem, and
we have not attempted to find T or H exactly.

Since we are interested in the long-wavelength properties
of the model near the transition, we will instead use general
considerations such as symmetry to determine the form of
the Hamiltonian. As we have noted above, the Hamiltonian
describes the dynamics of bosons on a kagome lattice, with
conserved particle number. The hard-core nature of the
dimers implies that the bosons have a similar hard-core con-
straint, restricting occupation numbers to zero or one on any
site of the lattice.

Further, the close-packing constraint in Eq. �1�, which en-
sures particle-number conservation, also implies that any tri-
angle of the kagome lattice, of either orientation, can be oc-
cupied by at most one boson. This implies a nearest-
neighbour repulsion of infinite magnitude.

We define the number operator for kagome site i as ni, and
�hard-core� bosonic creation and annihilation operators bi

†

and bi. The most general quantum Hamiltonian, with con-
served particle number and obeying the close-packing con-
straint, can then be written in the form
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FIG. 1. �Color online� Projection of the cubic lattice onto a �111�
plane, with the kagome lattice superimposed. The cubic sites are
shown by the numbers 0, 1, and 2, giving the quantum imaginary-
time coordinate � mod 3 �see main text�. Points with solid lines
show the sites of the kagome lattice, situated at the centres of the
cubic bonds �dashed lines� between sites with � mod 3=1 and 2;
they therefore lie in planes with � mod 3= 3

2 . The larger red circles,
shown superimposed on some of the kagome sites, illustrate the
occupied sites in one of the six degenerate ordering patterns, corre-
sponding to the six ordered states of the cubic dimers. The elemen-
tary unit vectors of the kagome lattice, e1 and e2, are shown with
dashed blue arrows. The coordinate axes shown in the bottom right
of the figure are the projection of the cubic axes onto the �111�
plane.
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H = − ��
i

ni +
U

2 �
i

ni�ni − 1� + U�
	ij


ninj + �
i,j

Vijninj

− �
i,j

tijbi
†bj + ¯ , �5�

where the ellipsis represents other terms, such as three-body
interactions and correlated hopping terms,11 whose precise
form is not important. The hard-core constraints have been
represented by interactions of strength U→�, the coeffi-
cients Vij describe a further-neighbor repulsion, and tij is the
hopping. While the Hamiltonian conserves particle number,
summing over all classical configurations means that all
particle-number sectors should be included in the quantum-
mechanical trace. The effective quantum problem is there-
fore defined in the grand-canonical ensemble, with a chemi-
cal potential � that, like the other coefficients, emerges as an
effective parameter.

A generalization of the dimer model16 to the case where
the occupation number of a given link is allowed to take on
values other than 0 or 1 would result in a similar quantum
Hamiltonian, but with a correspondingly expanded on-site
Hilbert space. An alternative generalization of the dimer
model allows for “monomers,” where the close-packing con-
straint in Eq. �1� can be violated to permit a site touched by
zero or multiple dimers �with a finite energy cost�. Such a
modification breaks conservation of particle number and
adds to H terms such as �i�Jibi

†+Ji
�bi� which eliminate the

phase-rotation symmetry.
Note that, as is generally the case for effective quantum

Hamiltonians used to describe classical partition functions, it
is not necessary for H to be hermitian.21 For example, the
hopping coefficients are, in general, not symmetric, tij� tji

� ,
following from the fact that choosing a particular �111� plane
to define the quantum problem breaks time-reversal symme-
try. As we have discussed previously in regard to a related
problem in spin ice,11 the nonhermitian terms are crucial for
reproducing the correct spatial dependence of the long-range
correlation functions.

Locality

For the analysis that follows, an important condition on
the Hamiltonian H is that it should be local, at least when
projected into a suitable subspace of low-energy states.
While the classical configuration energy E and the close-
packing constraint in Eq. �1� are local, this does not neces-
sarily imply the same for the transfer matrix or quantum
Hamiltonian. We have no general proof that the locality con-
dition is satisfied, and it is, in fact, possible, by considering
states with sufficiently high energy, to construct configura-
tions on which the effect of T is to cause hopping over arbi-
trarily long distances.

We argue, however, that locality is satisfied in the region
of interest, at low energy near the transition. In this region,
low-energy configurations of the original cubic dimer prob-
lem can be described in terms of ordered regions separated
by two-dimensional domain walls, which cost an energy pro-
portional to their surface area. The intersections of these with
a given time slice give the one-dimensional domain walls of

the quantum problem, separating different density-wave or-
derings of the bosons. Consider, in the quantum picture, a
time step in which a domain wall moves by a large distance,
so that one of the two neighboring domains grows by an area
�A. In the classical partition function, this corresponds to a
configuration where a domain wall has a section of area �A
running parallel to the �111� plane, in between the two con-
secutive time slices. Such a configuration has an energy cost
that grows linearly with �A, and hence has an exponentially
suppressed contribution to the transfer matrix.

Further confirmation of the applicability of a local Hamil-
tonian comes from the analysis of the Coulomb phase in Sec.
III, which reproduces the correct power-law form of the
long-range correlation functions �see Eq. �14�� on the as-
sumption that the low-energy excitations in the superfluid
phase are phonons with a linear dispersion. A definitive an-
swer to the question of locality could of course be found by
computing the quantum Hamiltonian exactly on a sufficiently
large lattice.

C. Phase structure

A major advantage of this particular choice of mapping is
that the six distinct ordering patterns for the classical dimers
map to six ordered states of the quantum problem, related to
each other by symmetry. As noted in subsection I �model�,
the states that minimize the classical configuration energy E
have all dimers parallel to one of the three cubic axes, and
half of the links of this orientation occupied. An example is
shown in Fig. 2, along with the corresponding arrangement
of quantum bosons.

Cubic links with the same orientation map onto the same
kagome sublattice, and since half of the cubic links of a
given orientation are occupied, the same is true of the
kagome sites of a given sublattice. As illustrated in Fig. 2,

FIG. 2. �Color online� Part of the cubic lattice showing one of
the ordered states of the dimers �in blue�. A �111� plane is superim-
posed on the crystal structure, cutting diagonally through the cube.
Such planes comprise the “time slices” on which the quantum Hil-
bert space is defined. The sites of the two-dimensional problem are
situated where the �111� plane intersects links of the cubic lattice;
these form a kagome lattice. Where a cubic link is occupied by a
dimer, the corresponding kagome site is occupied by a boson
�shown with red spheres�.

STEPHEN POWELL AND J. T. CHALKER PHYSICAL REVIEW B 80, 134413 �2009�

134413-4



the classical configurations that minimize E map to density-
wave states of the bosons, at filling �bosons per site� of 1

6 .
The three states with m=+�x,y,z are related by a rotation of
the kagome plane, while m= ��z are related by a transla-
tion.

As the �classical� temperature is raised from zero, thermal
fluctuations in the dimer configuration will occur, with those
of lowest energy being single flipped plaquettes. In terms of
bosons, these correspond to quantum fluctuations away from
the perfectly ordered density-wave patterns and occur once
the hopping coefficients tij in Eq. �5� become nonzero. For
sufficiently small hopping tij relative to the further-neighbor
repulsion Vij, the ground state remains ordered. We identify
this phase, where �connected� correlation functions are short
ranged and the lattice symmetry is broken, as a Mott insula-
tor of bosons with density-wave order.

When the classical temperature is raised beyond the criti-
cal value TC, the dimer order is lost. In the resulting high-
temperature Coulomb phase, the full lattice symmetry is re-
stored and each cubic link has an equal average occupation
of 1

6 . In the quantum model, the transition corresponds to a
loss of density-wave order at a critical hopping tij, and re-
stored lattice symmetry implies a uniform quantum ground
state with average particle number 1

6 on each site. �Note that,
since there are three sites in the kagome unit cell, this filling
corresponds to 1

2 per unit cell. The hard-core repulsion be-
tween nearest-neighbor sites also means that filling 1

6 is equal
to half of the maximum possible filling.�

This uniform ground state can be identified with the su-
perfluid simply by noting that, at fractional filling and with
neither quenched disorder nor spatial symmetry breaking, the
only possible phase for quantum bosons at zero temperature
is a condensate. In Sec. III, we will show that the power-law
correlations within the Coulomb phase are correctly repro-
duced by the phase mode of the condensate, providing fur-
ther justification for the identification of these phases.

As an aside, we consider the insight into this equivalence
that comes from the phenomenon of off-diagonal long-range
order �ODLRO�.11 The existence of a nonzero superfluid or-
der parameter implies that, in the condensed phase, the quan-
tum expectation value 	bi

†bj
 approaches a nonzero constant
in the limit of large separation of the points i and j. By
contrast, no such ODLRO exists in the Mott insulator and the
limiting value is zero.

The quantum expectation value is defined by

	bi
†bj
 =

Zij

Z
=

1

Z
Tr�TL/��bi

†bj� . �6�

The quantity Zi,j can be understood as the sum over histories
of the quantum problem, with a particle creation event at site
i and a particle annihilation at site j, on the same �arbitrary�
time slice. Returning to the language of the classical statisti-
cal problem, these events at which particle conservation is
broken become, according to the arguments following Eq.
�4�, points in three-dimensional space where the close-
packing constraint is violated. One should therefore under-
stand Zi,j as the partition function of the dimer model calcu-
lated in the presence of two test monomers at positions i and

j on the same �arbitrary� time slice. �Strictly, one is an empty
site, while the other is a site where two dimers meet at a
site.�

In the low-temperature phase, such monomers disrupt the
ordering pattern and cost energy proportional to the linear
separation between the two sites. By contrast, in the Cou-
lomb phase monomers are deconfined, separating them to
infinity costs a finite energy,3 and Zi,j approaches a nonzero
limit for large separation. The ODLRO in the quantum su-
perfluid is therefore equivalent to the deconfinement of
monomers; this is consistent with our identification of the
Coulomb and superfluid phases.

D. Symmetries of the Hamiltonian

As we will show in Secs. III and IV, an understanding of
the behavior both deep in the Coulomb phase and near the
ordering transition depends on an analysis of the symmetries
of the quantum model. We treat here the case where the
classical configuration energy E has full cubic symmetry.
Chen et al.17 have studied the effects of various modifica-
tions that reduce this symmetry, and we consider one ex-
ample in the appendix.

First, since the quantum Hamiltonian H describes a model
with conserved particle number, it has a U�1� symmetry un-
der global phase rotations of the bosonic creation and anni-
hilation operators: bi→bie

i
 and bi
†→bi

†e−i
. This symmetry
is spontaneously broken in the superfluid phase, where bi has
a nonzero expectation value.

Besides this internal symmetry, there are also spatial sym-
metries inherited from those of the classical dimer model,
but modified in important ways by the particular choice of
the imaginary-time direction. These symmetries can be con-
structed from combinations of three primitive symmetry op-
erations, a translation K1, a rotation R, and a reflection X1.
These operations are illustrated in Fig. 3, along with the
translation K2=RK1R−1.

We parametrize the positions of lattice sites in the kagome
planes by orthogonal coordinates x̃ and ỹ

x̃ =�3

2
�ry − rx�

ỹ = �2�rz −
1

2
rx −

1

2
ry� , �7�

where r� are coordinates referred to the cubic axes, which
take integer values at the cubic lattice sites.

The two operators K1 and K2 perform translations by the
elementary unit vectors e1 and e2 of the kagome lattice,
transforming the coordinates x̃ and ỹ according to

�x̃

ỹ
�→

K1�x̃

ỹ
� + �6�1

0
� �8�

�x̃

ỹ
�→

K2�x̃

ỹ
� + �6� 1/2

�3/2
� . �9�

They can be expressed in terms of pairs of translation opera-
tors T� for the cubic lattice, chosen so that the imaginary-
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time coordinate � is unchanged; for example, K1=Tx
−1Ty.

These transformations map the three kagome sublattices to
themselves.

We define R� as a rotation by 60° about the center of a
kagome hexagon, or, in terms of the cubic lattice, about a
�111� axis passing though a cubic site with � mod 3=0 �such
as the one at the center of Fig. 3�. This maps the kagome
lattice to itself, but is not a symmetry of the cubic lattice,
since, as can be seen in Fig. 3, it exchanges cubic sites with
� mod 3=1 and 2. We therefore define the operation R con-
sisting of an improper rotation by 60° through this axis,
which is a symmetry of the cubic lattice. In terms of the
bosons, R consists of the rotation R� followed by a time-
reversal operation �→3−�, and it commutes with quantum
Hamiltonian H. �A similar time-reversed symmetry opera-
tion was found to apply in an effective quantum description
of spin ice.11 The absence of time reversal as an independent
symmetry reflects the fact, noted in Sec. II B, that H is not
hermitian.� The rotation R permutes the three kagome sub-
lattices cyclically.

The remaining primitive symmetry operation of the
kagome model is the reflection X1 through a line running
perpendicular to the unit vector e1. It transforms x̃→−x̃, and
exchanges two of the sublattices �labeled a and b� while leav-
ing the third unchanged.

Besides these symmetries of the effective quantum Hamil-
tonian, there are further symmetries of the original classical
model that are broken by the explicit choice of the �111�
direction as imaginary time. These include reflections in the
cubic �100�, �010�, and �001� planes, which we denote Ix, Iy,

and Iz, respectively, and which relate different equivalent
choices of the imaginary-time direction. They cannot be
written as operations on the quantum Hilbert space, but in
terms of the continuum space-time action to be derived be-
low, they are simply reflections.

As an aside, one can also consider the operator represent-
ing translation in the time direction by three steps. As noted
in Sec. II A, the full transfer matrix T=T1

6 connects two �111�
planes separated by six steps in the imaginary-time direction,
and is the simplest choice consistent with conservation of
particle number. We can nonetheless consider the operator
T1/2=T1

3 representing “imaginary-time evolution” by three
steps, which maps the kagome lattice to itself, and clearly
commutes with T and hence with the quantum Hamiltonian
H.

Unlike the other symmetries of H, T1/2 cannot be written
as a permutation matrix in the occupation-number basis, and
as for the full transfer matrix, we have not attempted to find
its precise form. For our purposes, it is sufficient to note its
effect on the density: as follows from the observations of
Sec. II A, if a given kagome plane has a density of � bosons
per site, then the plane three steps later has density 1

3 −�.
Following our assumption of the locality of T, this implies
that, in the coarse-grained limit, T1/2 simply changes the sign
of local-density fluctuations. The microscopic Hamiltonian is
not invariant under a particle-hole transformation, and this is
therefore an emergent symmetry of the long-wavelength
limit.

III. CONTINUUM THEORY FOR COULOMB PHASE

As noted in subsection I �Model�, above the critical tem-
perature TC, the classical dimer model exhibits a Coulomb
phase, in which there is no ordering, but long-range correla-
tion functions have power-law forms and strong spatial de-
pendence. This behavior can be understood in terms of a
coarse-grained picture, in which the long-wavelength de-
grees of freedom are described by a solenoidal field.3 Deep
within the Coulomb phase, this approach predicts the dipolar
form for the dimer-dimer correlation function given in Eq.
�3�.

In this section, we will show that the long-distance behav-
ior of the correlation functions can also be obtained from the
effective quantum model derived in Sec. II. The power-law
behavior of the correlation functions follows immediately
from the presence of a Goldstone phase mode in the super-
fluid, while the precise spatial dependence of the dipolar cor-
relations can be reproduced by taking into account the sym-
metries of the effective quantum Hamiltonian. We have
applied a similar analysis to a related model of spin ice.11

A. Kagome continuum action

To describe the long-distance properties of the superfluid
phase of the quantum model, we pass from the microscopic
description to a continuum action. This action is written in
terms of bosonic fields � corresponding to the hard-core
boson operator b in the limit where the spatial coordinates x̃
and ỹ and the imaginary time � are taken as continuous. To

2

11

0

22

1

K1

K2 R
�

X1

a b

c

FIG. 3. �Color online� Part of the kagome lattice, shown with
points joined by solid lines, with the projection of the cubic lattice
superimposed, as in Fig. 1. Four symmetry operations, K1, K2, R�,
and X1, are illustrated in red. The two primitive translations K1 and
K2 are shown with straight arrows, while R�, a rotation by 60°
about the center of a kagome hexagon, is shown with a curved
arrow. The dashed red vertical line shows the line of reflection for
X1. The three sites of the triangle at the bottom right are labeled a,
b, and c to denote the three kagome sublattices.
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preserve the important effects of the kagome lattice structure,
we define three �c-number� fields � corresponding to the
three kagome sublattices, � �a ,b ,c� �illustrated in Fig. 3�.

The continuum action S will contain all powers of the
fields and their derivatives consistent with the symmetries of
the hard-core boson problem, described in Sec. II D. We
must therefore determine the effects of these symmetries on
the fields and the coordinates x̃, ỹ, and �.

Firstly, the symmetry under uniform U�1� phase rotations
of the boson operators leads to the same condition on the
fields � and hence restricts the terms in S to be those which
are invariant under such phase rotations. The translation op-
erators K1 and K2 do not affect the sublattices and simply
lead to translations of the coordinates x̃ and ỹ.

Next, consider the operator R, which consists of a rotation
by 60° followed by a time-reversal operation. The rotation
permutes the three sublattices cyclically and also acts on the
spatial coordinates, while time reversal corresponds to com-
plex conjugation of the field operators11 �→�

� . Finally,
the reflection X1 exchanges sublattices a and b while also
reflecting the coordinate ỹ→−ỹ.

These transformations can be written in a simpler form by
defining the derivative operators �̃�= �

�3
2 �x̃− 1

2�ỹ, the vec-
tors �̃ and � ,

�̃ = ��̃−

�̃+

�ỹ
� and � = ��a

�b

�c
� , �10�

and the matrices R and X1,

R = �0 1 0

0 0 1

1 0 0
� and X1 = �0 1 0

1 0 0

0 0 1
� . �11�

The effects of the symmetry operations R and X1 on �̃, �,
and the time derivative �� are summarized in Table I.

These symmetry considerations allow a continuum action
to be written in terms of the field �, which should contain
all terms that are invariant under the action of the full sym-

metry group. In the Coulomb phase of the classical model,
the quantum bosons condense, so that the field � acquires a
nonzero expectation value. This phase breaks no spatial sym-
metries, and so 	�
 is equal on the three sublattices .
Away from the transition, the long-wavelength properties are
dominated by the gapless Goldstone mode describing uni-
form rotations of the phase, and corresponding to the broken
U�1� symmetry. Writing ��ei�, the effective action can be
expressed in terms of the field �, whose symmetry properties
are shown in Table I.

The effective phase-only action S� can be written in the
form

S� =� dx̃dỹd��− ���̃2 + ��
2�� + ¯� , �12�

where the ellipsis denotes terms with higher powers of � or
higher derivatives. �All terms with a single derivative can be
rewritten as total derivatives and so vanish on integration.�
This continuum action is explicitly space-time symmetric;
the relative coefficients of the spatial and temporal deriva-
tives are required to be equal �in the appropriate units, cho-
sen in Eq. �7�� by the full cubic symmetry of the original
model �or equivalently by symmetry under the inversion op-
erators I��.

To evaluate the correlation functions of the dimer occupa-
tion numbers, we must relate these quantities to the con-
tinuum field �. First, consider the boson density, which we
represent by the field n giving the local density measured
relative to the average filling of 1

6 . The symmetry properties
of the vector n are included in Table I; note that it is invari-
ant under time reversal. These properties are sufficient to
identify the density operator �to leading order� as

n � �̃� + ��� , �13�

where the relative coefficient is again fixed using cubic sym-
metry. �The first term is allowed only because of the absence
of time-reversal symmetry, a consequence of the nonhermi-
tian nature of H discussed in Sec. II B.�

B. Cubic lattice

The symmetry operations R and X1 have so far been
treated as acting within the kagome planes, but they are also
symmetries of the full cubic lattice. Their action �in the con-
tinuum limit� on the three-dimensional position vector r and
derivative operator � are shown in Table I, along with the
behavior of the field d, which is defined as the continuum
limit of the dimer occupation number, with the average oc-
cupation of 1

6 subtracted.
To determine the correlation functions of the dimer field

d, we must relate it to �. It would be consistent with the
symmetries listed in Table I to identify d� with the combina-
tion ���. This is, however, incorrect, as can most easily be
seen by making use of the cubic reflections I�, defined in
Sec. II D: ��� changes sign under I�, whereas d� does not.
To find the correct relationship between these fields, consider
the effect of the cubic reflections on the microscopic dimer
degrees of freedom, such as dx�0�, which gives the occupa-

TABLE I. Effects of the symmetry operators R and X1 on the
continuum fields and derivative operators, expressed in terms of �̃
and � �Eq. �10��, R and X1 �Eq. �11��, � �Eq. �12��, and n �Eq.
�13��, as well as the cubic lattice position vector r, derivative �, and
dimer density field d, discussed in Sec. III B.

R X1

�̃ −R�̃ X1�̃

�� −�� ��

� R�� X1�

� −� �

n Rn X1n

r −Rr X1r

� −R� X1�

d Rd X1d
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tion number for the link between the sites 0 and �x. Under Ix,
this maps to the link between −�x and 0, described by d��
−�x�; in general, the microscopic variable d��r� maps to
d��I�r−������ under I�. Using �r, equal to �1 on the two
sublattices, we can therefore construct the combination
�rd��r�, which, after coarse graining, changes sign under I�

�since �r=−�I�r−��
for any ��. The symmetries in Table I are

insufficient in this case because they all map from one quan-
tum plane to another; these are separated by multiples of
��=6, and so �r= �−1�� is unchanged. One can instead use
the operator T1/2, defined at the end of Sec. II D. Particle-
number conservation between adjacent planes with � mod 6
= 3

2 leads to U�1� symmetry under rotations of the phase �.
This symmetry therefore acts with the opposite sign in
the planes with � mod 6= 3

2 +3, leading to the factor of
�r= �−1��.

We can therefore identify �rd�����, which, together
with the action given in Eq. �12�, allows the Coulomb-phase
dimer-dimer correlation function to be found. The
�imaginary-time ordered� propagator for the field � is simply
1 / �k�2, leading11 to real-space correlations with a dipolar
form,

	d��r�d��0�
 � �r
3r�r� − �r�2���

�r�5
. �14�

This form for the correlators was predicted by Huse et al.,3

by considering the continuum limit of a coarse-grained ac-
tion for the dimer degrees of freedom.

IV. CONTINUUM THEORY OF TRANSITION

The mapping described in Sec. II relates the thermal tran-
sition between a dimer crystal and a Coulomb phase to the
quantum phase transition from a Mott insulator with density-
wave order to a superfluid. A continuum theory to describe
the phase transition in the dimer model can therefore be
found by considering this equivalent quantum transition. As
noted in Sec. I, the presence of two incompatible order pa-
rameters makes the standard LGW approach insufficient, and
instead, the critical theory can be found using a mapping to
dual vortex fields.

A. Duality mapping

This duality mapping has been described in detail by
Balents et al.,19 and we will simply sketch a derivation.
�Note that Sengupta et al.22 found the critical theory for a
filling factor of f = 1

3 on the kagome lattice.� The starting
point is a current-loop representation of the quantum boson
problem,23 where the degrees of freedom are the currents J
defined on the links of the space-time lattice, obeying the
continuity equation div J=0 �where div represents the lattice
divergence�. The essence of the duality mapping is a trans-
formation from J to a gauge field A on the links of the dual
lattice, according to J=curl A.

It should be noted that mapping to an action written in
terms of currents, which can be done using a “Villain repre-
sentation” for the hopping terms,19,23 involves eliminating all
but the nearest-neighbor hopping. �This can be performed

explicitly by introducing extra auxiliary fields analogous to J
to describe further-neighbor processes, before integrating
these out to give renormalized couplings for the currents J.�
Reflection symmetries such as X1 ensure that the nearest-
neighbor hopping coefficients tij are symmetric, and so the
nonhermitian nature of H has no effect on the continuum
theory near the transition. �It was similarly found in a related
model for spin ice11 that the directed hopping terms in the
effective quantum Hamiltonian were irrelevant at the transi-
tion.�

In our approach, the bosons occupy the sites of the
kagome lattice, and so the space-time lattice is not cubic as
in the original dimer problem, but instead consists of stacked
kagome planes. As illustrated in Fig. 4, the dual of kagome is
the dice lattice,22,24,25 and so the gauge field A� is defined on
the links � of a lattice of stacked dice planes. The sites of the
dice lattice form three sublattices, which we label as 
=0,1 ,2, corresponding to the three distinct plaquettes of
kagome. The positions of sites on the dice lattice are given
by the �two-component� vector x=a1e1+a2e2+�, where a1

and a2 are integers and �= 1
3 �e1+e2� is the displacement be-

tween the 0 and 1 sublattices.
The currents J, and hence the gauge field A, take integer

values �due to the discrete nature of the quantum bosons�,
and so the model is “frustrated,” in the sense that there are
many space-time configurations that give nearly equal con-
tributions to the action. �This fact is a straightforward con-
sequence of the fractional boson occupation number; many
arrangements of bosons with filling f = 1

6 have similar inter-
action energies.� It is more convenient to describe this frus-
tration by introducing “matter fields” �i on the sites i of the
dual lattice, and promote A to a continuous-valued field.
�This step can be performed explicitly by using the Poisson

0 0

1 1

2 2

FIG. 4. �Color online� The dice lattice �shown with thin solid
lines�, dual to the kagome lattice �dashed lines�. The unit vectors e1

�horizontal� and e2, as in Fig. 2, are shown with blue arrows. The
thick red lines show two unit cells of the dice lattice, or one mag-
netic unit cell. Within this unit cell, the sites of the dice lattice are
indicated with black circles containing numbers labeling the three

sublattices, =0,1 ,2. The background gauge field Ā� is shown, up
to an integer, with black arrows, where each arrowhead represents 1

6
of a flux unit. The arrangement is chosen so that the curl �defined as

the sum of Ā� going counterclockwise around a loop� is equal to
f = 1

6 for every plaquette. �Moving to the right by 2e1, or one mag-

netic unit cell, increases Ā� by 1.�
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summation formula.19� The frustration on A is then lifted,
and we shift it by a �position-dependent� constant A to make
clear that � now carries the frustration.

The dual theory has a gauge invariance resulting from the
definition of A�, and can be written in terms of the gauge
field A� and matter fields �i,

Sdual = ��
p

�curl A�2 − tv�
�

��i
†e2�i�A�+Ā��� j + H.c.�

+ �
i

�r��i�2 + u��i�4� + ¯ , �15�

where �p sums over plaquettes p of the dual lattice; �� sums
over dual-lattice links �, which start at site i and end at site j;
and �i sums over dual-lattice sites. Detailed derivations lead-
ing to Eq. �15� have been given by Balents et al.19

The field �i corresponds to a vortex of the original
bosons, and the gauge field induces the long-range interac-
tions between vortices. By duality, the average boson density
of f = 1

6 per site affects the vortices as a flux of f per
plaquette. This is represented by the background field A
obeying curl A= f; we choose the gauge illustrated in Fig. 4.

The action Sdual consists of a vortex field �i with a frus-
trating hopping term, coupled to a dynamical gauge field A�.
Following Balents et al.,19 our approach will be to neglect
temporarily the interaction terms, and to consider the effect
of the frustration on the dispersion of a single vortex. The
full dual action, including the interactions, can then be re-
written in terms of the eigenstates of the single-vortex
Hamiltonian H1. The precise form of these eigenstates will
depend on the details of Sdual, but we will use symmetry
considerations to effectively block-diagonalize H1.

B. Projective symmetry group

The problem of a single vortex with frustrated hopping is
equivalent to the Hofstadter problem for a charged particle
moving on a lattice in the presence of a magnetic field.

Choosing a specific gauge for the background field Ā reduces
the spatial symmetry of the Hamiltonian, and it is convenient
to introduce a so-called “projective symmetry group”
�PSG�.19,26 We first address the effect of the lattice symme-
tries in the real-space basis, before taking the Fourier trans-
form to momentum states, in terms of which the eigenstates
of H1 can be written.

The single-particle Hilbert space is spanned by position
states �x
 �where x denotes a lattice site�, and H1 is a sum of
hopping terms of the form

�x + b
	x�ei��x,b�, �16�

for displacements b linking sites of the lattice.
The PSG associates with a lattice symmetry Q �any of the

translations, rotations, and reflections defined in Sec. II D�,
which maps the site x to Q�x�, a corresponding operator Q̂
that commutes with the Hamiltonian H1. Its action on a state
�x
 is given by a real-space transformation, accompanied by
a gauge transformation,

Q̂�x
 = ei�Q�x��Q�x�
 . �17�

Because the Hamiltonian has a lower symmetry than the lat-

tice, the operators Q̂ do not obey the group multiplication
table for the full lattice symmetry group. Instead, they obey
it up to phase factors, determined by the functions �Q.

Applying Q̂ to the hopping term in Eq. �16� gives

Q̂�x + b
	x�ei��x,b�Q̂−1 = e�i��x,b�ei�Q�x+b�e−i�Q�x��Q�x + b�


�	Q�x�� , �18�

where � is positive �or negative� if Q̂ is an �anti�unitary
operator. Since Q is a lattice symmetry, there must be a cor-
responding term in H1 given by

�Q�x + b�
	Q�x��ei��Q�x�,Q�x+b�−Q�x��. �19�

The phases �Q�x� should be chosen for all x in order to make
the expressions in Eqs. �18� and �19� equal.

We therefore require

ei��Q�x+b�−�Q�x�� = ei���Q�x�,Q�x+b�−Q�x�����x,b��. �20�

This gives a set of equations for �Q�x� which must be solved
simultaneously. �For the translations K1,2 and rotation R, a

solution can be found for Q̂ a unitary operator, but for the

reflections such as X1, Q̂ must be chosen antiunitary.19�
Using the choice of gauge illustrated in Fig. 4, the trans-

formation operators acting on the state �x+�
, with
x=a1e1+a2e2, give

K̂1�x + �
 = �− 1�a2�x + e1 + �
 �21�

K̂2�x + �
 = �x + e2 + �
 �22�

R̂�x + �
 = ei�/6�3a2+5��2a1+a2+2�2��R�x + ��
 �23�

X̂1�x + �
 = �− 1�1/2a2�a2+1��X1�x + ��
 , �24�

where R�x+��= �−a2−�1−�2�e1+ �a1+a2+�2�e2+ ̄�
and X1�x+��=−�a1+a2+�e1+a2e2+�. Note that R ex-
changes sublattices 1 and 2; we have defined ̄ so that

0̄=0, 1̄=2, and 2̄=1.

The operators Q̂ form a group with multiplication laws
equal, up to phase factors, to those of the original space
group formed by the operators Q. These phases can be cal-
culated using the transformations in the position basis, giving

K̂1K̂2 = − K̂2K̂1 �25�

K̂2R̂ = ei�/3R̂K̂1 �26�

K̂2R̂2 = K̂1R̂2K̂1 �27�

R̂6 = 1 �28�

K̂1X̂1K̂1 = X̂1 �29�
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K̂1X̂1K̂2 = K̂2X̂1. �30�

These commutation properties depend only on the effective
magnetic flux and are independent of the choice of gauge.

Using the real-space transformations given in Eqs.
�21�–�24�, the Fourier transform to momentum space can be
performed. We define the reciprocal lattice vectors e1

� and e2
�

so that ei ·e j
�=2��ij and the momentum-space basis given by

�k,
 	 �
a1,a2

e−2�i��1a1+�2a2��a1e1 + a2e2 + �
 , �31�

where k=�1e1
�+�2e2

�. The nonuniform phase factors �Q�x�
cause the operator Q̂ to mix a discrete set of momentum
values, but at certain high-symmetry points in the Brillouin
zone �BZ�, a smaller set of momenta are mixed.

On the dice lattice with f = 1
6 , one finds that a generic

momentum state belongs to a set of 24 states that are mixed,
but that there are four points within the �lattice� BZ that are
closed under the action of the full symmetry group. With our
choice of gauge field, their momenta are given by km,n=
−� 1

12 + m
2 �e1

�+ � 1
12 + n

2 �e2
� with m ,n� �0,1�, and we expect the

global minima of the single-particle dispersion to occur at
these points.27

In fact, we argue that two independent linear combina-
tions from the four points form global minima, as follows: It
can be seen from Fig. 4 that K2 remains a full symmetry in
the presence of the background gauge field, and so the cor-

responding operator K̂2 takes a particularly simple form. Its
action on a position state is given in Eq. �22�; acting on a
momentum state it gives simply

K̂2�k,
 = eie2·k�k,
 . �32�

This implies that the single-particle Hamiltonian H1 does not
mix momentum states �km,n ,
 with distinct values of n.
Considering first n=0, one of the energy eigenstates at the
minimum of the single-particle dispersion can therefore be
written

�0
 = �
m,

cm�km,0,
 , �33�

where cm are coefficients depending on the details of H1.
�The magnetic BZ is half the size of the lattice BZ, so that
momenta km,n with m=0,1 correspond to the same point in
the magnetic BZ, and are hence mixed by H1.�

The state �0
 is clearly an eigenstate of K̂2, with eigen-
value ei�/6. It is straightforward to show, using Eq. �25�, that

the state �1
=ei�/6K̂1�0
 is also an eigenstate of K̂2, with ei-

genvalue −ei�/6, and hence 	0 �1
=0. Since K̂1 commutes
with H1 �by construction�, this state is also an energy eigen-
state with equal eigenvalue. Using the Fourier transform of
Eq. �21�, one finds explicitly

�1
 = �
m,

cm�− 1�m�km,1,
 , �34�

and K̂1�1
=e−i�/6�0
.
There are therefore two degenerate minima of the single-

particle dispersion, �n
 with n� �0,1�. �The same result was

found by Jiang and Ye25 by directly diagonalizing a Hamil-
tonian with nearest-neighbor hopping.� While the values of
the coefficients cm depend on the precise form of the vortex
hopping Hamiltonian, the behavior of �0
 and �1
 under the
action of the full symmetry group can be determined
uniquely using Eqs. �25�–�30�, giving

	n�K̂1�n�
 = e−i�/6�0 1

1 0
�

nn�
�35�

	n�K̂2�n�
 = ei�/6�1 0

0 − 1
�

nn�
�36�

	n�R̂�n�
 =
e−i�/12

�2
�1 1

i − i
�

nn�
�37�

	n�X̂1�n�
 =
1
�2

�1 i

i 1
�

nn�
. �38�

We have so far considered only the single-particle kinetic
terms in the action Sdual given in Eq. �15�. To return to the
full description, we first define creation operators v0

† and v1
†

for the single-particle states �0
 and �1
. The real-space vor-
tex creation operator projected into the low-energy sector can
then be written as

�†�x� = �0
��x�v0

† + �1
��x�v1

†, �39�

where �n�x� are slowly varying functions �on the lattice
scale�.

The symmetry properties of the two-component vector
�= �

�0

�1
� are determined by those of the states �n
, and can be

summarized as

�→
K1

ei�/6�0 1

1 0
�� �40�

�→
K2

e−i�/6�1 0

0 − 1
�� �41�

�→
R ei�/12

�2
� 1 1

− i i
�� �42�

�→
X1 1

�2
� 1 − i

− i 1
���. �43�

Note that the reflection X1 is represented by an antiunitary
operation.

C. Dual continuum action

The action Sdual can be rewritten in terms of �, and the
other components of the vortex fields integrated out, giving
renormalized values for the coefficients. The transformation
properties of � reproduce the nontrivial effects of the lattice
structure and fractional filling f , allowing the continuum
limit to be taken, with the spatial coordinates x extended
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from discrete values describing the dice lattice to continuous
two-dimensional coordinates.

The transformations given in Eqs. �40�–�43� strongly con-
strain the form of the continuum action, which can be ex-
pressed as a series in powers of the vortex field �, the gauge
field A, and the space-and time-derivative operators. As in
the Coulomb phase, described in Sec. III, the full cubic sym-
metry of the original dimer problem also constrains the final
action to be space-time symmetric.

We first consider the terms containing only the vortex
fields �. These are most easily found by expressing all
gauge-invariant �i.e., local and phase-rotation invariant� bi-
linears of the fields �n in terms of the boson density opera-
tors, which are the order parameters for the density-wave
phases. The ordering patterns with which we are concerned
�such as the one illustrated in Figs. 1 and 2� are characterized
by nonzero expectation values of the momentum-space den-
sity at k� � 1

2e1
� , 1

2e2
� , 1

2e1
�+ 1

2e2
��.

Defining ��1�2
as the boson density operator at momentum

k=�1e1
�+�2e2

�, the order parameters are �1
2

0, �0 1
2
, and �1

2
1
2
. In

the continuum limit, we can identify these fields with the
bilinears of �n using their symmetry properties; we find

�
�1

2
1
2

�1
2

0

�0 1
2

� � �†M†��x

�y

�z�M� , �44�

where M= �1− i�x� /�2 is a unitary matrix, and �� is a Pauli
matrix. In the language of the original dimer problem, the
order parameter is the magnetization m�, related to the dimer
occupation number by Eq. �2�. This can similarly be ex-
pressed in terms of the vortex fields as

m� � �†M†��M� . �45�

We will now identify the allowed interaction terms for the
vortex fields, and it is convenient to do this by writing them
in terms of m�. While the full action has cubic symmetry, the
lowest-order terms in fact have SO�3� rotation symmetry,
which corresponds, via Eq. �45�, to SU�2� symmetry for the
vortex fields �. Our primary concern will be to identify the
first term that explicitly breaks this higher symmetry.

Defining the SU�2� Casimir invariant �=�†�, all gauge-
invariant combinations of the fields �n can be written in
terms of mx,y,z and �, and it is straightforward to show that
�m�2��2 is also an SU�2� invariant. While the action can
contain any term involving only �, terms involving func-
tions of � that break SU�2� are strongly constrained by sym-
metry.

First note that the only allowed quadratic and quartic �in
the vortex fields� combinations are � and �2. At sixth order,
besides �3, one finds the combination mxmymz, which is in-
variant under all of the operations in Eqs. �40�–�43�. It is
nonetheless excluded by requiring symmetry under the cubic
reflections T�, which take m�→−m�. �In terms of the
bosons, this corresponds to particle-hole symmetry, which
swaps vortices and antivortices.�

The lowest-order combination that satisfies all the sym-
metries of the problem, but explicitly breaks the SU�2� sym-

metry, is of eighth order in �, and its contribution to the
action is

L1 = v�
�

m�
4 . �46�

Symmetry does not fix the coefficient v, and it is, in general,
allowed to take either sign. In the ordered phases that we
describe here, however, a single component of the magneti-
zation acquires a nonzero expectation value; such phases re-
quire v�0.

D. Emergent SU(2) symmetry

The full action is given by the continuum limit of Eq. �15�
and can be written as a three-dimensional integral over a
Lagrangian density L=L0+L1+¯. The lowest-order terms
L0 take the forms expected for a U�1� gauge field minimally
coupled to matter fields �, with the lattice curl becoming a
differential curl, and the modified hopping term becoming a
covariant derivative

L0 = ���− iA���2 + s���2 + u����2�2 + ��� � A�2. �47�

The interaction term L1 is given in Eq. �46� and the ellipsis
represents further terms that are expected to be irrelevant.
The cubic symmetry of the original dimer problem means
that L �considered as the action for a quantum problem� is
space-time symmetric, and this fact has been used to express
L0 in terms of the three-dimensional derivative operator �.

The transition occurs when the quadratic coefficient s is
tuned through its critical value, and the gauge field A ac-
quires a gap by the Anderson-Higgs mechanism. The super-
fluid phase of the boson problem �the Coulomb phase of the
dimer problem� is equivalent to the Coulomb phase of this
gauge theory, within which the long-range correlations are
reproduced by the gapless gauge field. The Mott insulator
�ordered dimers� corresponds to the Higgs phase, where
there are no gapless excitations and SU�2� symmetry is bro-
ken by condensation of the matter field �.

Note that the gauge field A is by construction noncom-
pact, so that monopoles are forbidden. Such monopoles
would give points in space time with nonzero divergence
div J of the boson current, which map to monomers in the
original dimer problem.

It is not firmly established whether the action L has any
nontrivial fixed points under the renormalization group �RG�.
As noted by Balents et al.,19 such a conjecture is difficult to
test analytically, since, for example, an expansion in �=4
−d, where d is the spatial dimension, has no weak-coupling
fixed points. As we remark in Sec. V, the numerical evidence
remains inconclusive. It is clear from simulations, however,
that the transition in the original dimer model is, at most,
weakly first order, with a correlation length of at least hun-
dreds of lattice spacings, and so a continuum description is
appropriate.

The terms appearing in L0 have full SU�2� symmetry,
while the lowest-order term breaking this to the microscopic
cubic symmetry, L1, is of eighth order in the field �. It is
therefore highly likely that this term, as well as higher-order
symmetry-breaking terms, is irrelevant in the continuum, and
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that the effective theory is given by L0 and has an emergent
SU�2� symmetry.

This leads naturally to the conclusion that physical prop-
erties measured sufficiently close to the transition should
show full SO�3� symmetry, rather than the reduced cubic
symmetry of microscopic model. This claim is, in fact, in
agreement with qualitative observations made by Misguich
et al.,15 based on their numerical results near the transition.
First, the measured distribution of the order parameter m at
the critically becomes increasingly spherically symmetric for
larger system sizes. Second, the dimer correlation function
	d��r�d��0�
, while taking the form given in Eq. �3� deep
within the Coulomb phase, is dominated by a “spinlike” con-
tribution near the transition. This follows from the fact that
the magnetization couples directly �without derivatives� to a
bilinear in the critical field, according to Eq. �45�, and forms
a three-dimensional representation of SU�2�. We therefore
expect

	m��r�m��0�
 � ����r�−d+2−�m, �48�

where the critical exponent �m is the anomalous dimension
of the magnetization �and a similar expression holds for the
dimer correlation function�. The absence of a weak-coupling
fixed point prevents us from making quantitative predictions
about the anomalous dimension �m.

As noted by Misguich et al.,15 these properties, while ex-
plained straightforwardly by an SU�2�-symmetric continuum
theory, are incompatible with other, more obvious, candidate
continuum theories, such as the O�3� model.

V. DISCUSSION

In this paper we have presented a derivation of a con-
tinuum theory to describe the phase transition from a dimer
crystal to a Coulomb phase observed in simulations of a
classical dimer model on the cubic lattice.9 Our approach
proceeds by first mapping to a quantum model of bosons,
which has a corresponding phase transition from a Mott in-
sulator with density-wave order to a superfluid. The second
stage of the derivation consists of applying a duality map-
ping to this quantum model, allowing the phase transition to
be described in terms of an Anderson-Higgs transition for the
dual vortex fields.

The continuum theory we derive coincides with one ob-
tained for the same model by Charrier et al.16 and by Chen et
al.,17 using a duality mapping applied directly to the classical
model. The Lagrangian L0 is given in Eq. �47� and is re-
ferred to as NCCP1; we expect the long-wavelength proper-
ties near the transition to be described by this theory. In other
words, there should be some range of length scales, much
larger than the lattice scale, at which L0 provides an appro-
priate description. This assumes that L1 and all higher-order
terms are irrelevant in the RG sense. As we have noted
above, the numerical results of Misguich et al.15 support the
claim that at least L1 and all other terms breaking SU�2�
symmetry are irrelevant.

The question of whether the transition in the dimer model
is continuous or first order remains open, but is clearly re-
lated to same question for the transition between the Cou-

lomb and Anderson-Higgs phases in the model L0. This re-
mains contentious,28–33 with numerical evidence so far
inconclusive and little prospect of insight from analytics. The
theory L0 has one free parameter � �after s is tuned to its
critical value�, and it is possible that it has a continuous
transition for some value of � and not for others.32 �It is not
clear how � depends on the details of the classical energy
E—for instance, whether it increases or decreases when one
adds further-neighbor interactions.�

In fact, the most economical interpretation of the avail-
able numerical results is that the original cubic dimer model
�with only nearest-neighbor interactions� is near a tricritical
point. Evidence for this comes from the critical exponents in
the original dimer model and the results of adding deforma-
tions.

The critical exponents reported by Alet et al.9 for the cu-
bic dimer model are, as noted by the authors, consistent with
those expected generically at a tricritical point �and, in fact,
those seen at the tricritical point in an NCCP1 model by
direct simulations32�. They are inconsistent with those for the
generic NCCP1 transition as observed in simulations of vari-
ous models expected to be described by this theory.28–30,32

The scenario that the cubic dimer model with only
nearest-neighbor interactions is near a tricritical point sug-
gests that modifications to the Hamiltonian should drive the
system away from this tricritical point, either to a strongly
first-order transition or to the generic continuous transition.
Recent numerical results show that some perturbations, in-
cluding ones that preserve the full symmetry18 and ones that
break it,17 can make the transition clearly first order. Confir-
mation of the tricritical-point scenario would require the
demonstration of a line of continuous transitions for some
range of parameters.

Charrier et al.16 have studied a model where Eq. �1� is still
enforced, but the variables d��r� are allowed to take all in-
teger values �although their simulations treated a dual
model�. As for the unperturbed dimer model, they found re-
sults consistent with a continuous transition, but in this case
with exponents in agreement with those reported for
NCCP1.28–30,32 By introducing an energy cost for larger val-
ues of d�, it is possible to interpolate continuously between
this generalized version and the original dimer model; simu-
lations for a range of values would be a useful test of the
tricritical-point scenario.
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APPENDIX: MODELS WITH AN
INTERMEDIATE PHASE

In their numerical studies, Chen et al.17 considered vari-
ous modifications of the classical configuration energy E that
break the cubic symmetry of the original model and reduce
the number of degenerate ordered states. While certain modi-
fications lead to strongly first-order transitions, others instead
cause the appearance of an intermediate phase between the
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high-temperature Coulomb and low-temperature ordered
phases. We will consider one particular case, referred to by
Chen et al.17 as the “xy” model, and show how the phase
diagram can be interpreted in terms of the mapping to an
effective quantum Hamiltonian.

The xy model is defined so that the only configurations
that minimize the classical energy Exy are those with magne-
tization m� ��x ,�y�. This can be achieved by including
interactions only between the subset of bonds shown on
the left-hand side of Fig. 5. Explicitly, we can write
Exy=−�nx

e+ny
e�, where

n�
e = �

r

�r� even�

�
���

d��r�d��r + ��� �A1�

counts the number of nearest-neighbor parallel dimers on
even bonds along the � direction.

Using the mapping described in Sec. II, the bonds in-
cluded in Exy correspond to a subset of the sites of the
kagome lattice shown on the right-hand side of Fig. 5. In the
quantum Hamiltonian Hxy corresponding to the xy dimer
model, these sites acquire an attractive potential energy, re-

ducing the degeneracy of the density-wave ordered Mott in-
sulator states that occur in the limit of weak hopping.

Crucially, the reduced symmetry increases the size of the
unit cell fourfold to 12 sites, so that there are now two
bosons per unit cell. It is therefore possible to form a zero-
temperature insulating state that breaks no symmetries. A
simple caricature of such a state has one boson localized on
every neighboring pair of attractive sites, forming a valence
bond linking the two. The true ground state will involve both
fluctuations onto other sites and correlations between the po-
sitions of nearby bosons.

Such a valence-bond Mott insulator is expected to be the
ground state at intermediate ratios of the hopping strength to
the interactions. When the hopping is increased, the fluctua-
tions grow larger, leading to a transition into a superfluid
phase with broken U�1� symmetry and gapless Goldstone
modes. This transition is described by the standard fixed-
density �relativistic� U�1� critical theory, as for the Bose-
Hubbard model at integer filling,34,35 in the XY universality
class. For smaller hopping strengths, the further-neighbor in-
teractions between bosons will become sufficient to cause
long-range order in the positions of the bosons. This breaks
the symmetry X1 �see Fig. 3� giving a density-wave ordered
state corresponding to one of the dimer crystals with magne-
tization m� ��x ,�y�. This transition is, if continuous, de-
scribed by the Ising universality class.

The observations of Chen et al.17 are consistent with our
analysis. At high temperatures, they observe a Coulomb
phase �corresponding to the quantum superfluid�, as in the
original model with full cubic symmetry. As the temperature
is lowered, the system enters a “paramagnetic” phase �the
valence-bond Mott insulator�, with no broken symmetry and
confined monomers, via a transition in the inverted-XY class.
Symmetry between the x and y directions �X1 on the kagome
lattice� is broken at a lower-temperature transition into the
dimer crystal �quantum density-wave order�, which is, in
fact, found to be strongly first order. By considering the in-
teractions that can be added to the Lagrangian L0 �Eq. �47��
in this reduced-symmetry case, Chen et al.17 have shown that
this first-order transition can be naturally understood as a
“spin flop,” a reorientation of the vector order parameter �.
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